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ABSTRACT

The use of the Maximum Principle for the large angle slewing of LSS usually results in
the so-called two-point boundary-value problem, in which many requirements {e.g.,
minimum time. small amplitude, and limited control power, etc.} must be satisfied
simultaneously. The successful soluUon of this problem depends largely on the use of
an efficient numerical algorithm. There are many candidate algorithms available for
this problem {e.g.. quasilineartzatlon, gradient, etc.). Here we discuss only the
quasllineariT_Uon method which has been used for several cases of large angle slewing
of LSS. The basic idea of this algorithm is to make a series of successive
approximations of the solution from a particular solvable case (linear or nonlinear) to
a more general practical case.

For the rigid spacecraft slewing problem with no constraints on the controls, the
.solution procedure can be found in the literature. This procedure needs to be modified ff
a minimum time for the slewing problem is desired with control limits given. Recently,
an Indirect method for finding the minimum time was developed to meet all these
requirements.

For the general mixed (including both rigid and flexible parts] problem, an additional
constraint of small vibrational amplitude on the flexible parts is imposed. To solve
this problem several steps in which the complexity increases gradually are needed, i.e.,
from a llnearlzed version to a final nonlinear problem, from a less constrained case for
the control to a more constrained one. from a nonminimum-time level to a near-
mlnlmum-time slewing in which a trade-off needs to be made between minimum time
and small flexural amplitude requirements. Some examples of these algorithms are
presenied for planar slewing maneuvers of the SCOLE configuration.
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Abstract

The use of the Maximum Principle for the large angle

slewing of LSS usually results in the so-called two-point

boundary-value problem, in which many requirements (e.g.,

minimum time, small amplitude, and limited control power, etc)

must be satisfied simultaneously. The successful solution of

this problem depends largely on the use of an efficient

numerical algorithm. There are many candidate algorithms

available for this problem (e.g., quasilinearization, gradient,

etc.). Here we discuss only the quasilinearization method which

has been used for several cases of large angle slewing of LSS.

The basic idea of this algorithm is to make a series of

successive approximations of the solution from a particular

solvable case (linear or nonlinear) to a more general practical

case.

For the rigid spacecraft slewing problem with no

constraints on the controls, the solution procedure can be

found in the literature. This procedure needs to be modified if

a minimum time for the slewing problem is desired with control

limits given. Recently, an indirect method for finding the

minimum time is developed to meet all these requirements.

For the general mixed (including both rigid and flexible

parts) problem, an additional constraint of small vibrational

amplitude on the flexible parts is imposed. To solve this

problem several steps in which the complexity increases

gradually are needed, i.e., from a linearized version to a

final nonlinear problem, from a less constrained case for the

control to a more constrained one, from a non-minimum-time

level to a near-minimum-time slewing in which a trade-off needs

to be made between minimum time and small flexural amplitude

requirements. Some example s of these algorithms are presented

for planar slewing maneuvers of the SCOLE configuration.



.INTRODUCTION

t'llAXlt'lUt'l PRINCIPLE 1,5 APPLIED TO

THE ATTITUDE MANEUVER AND VIBRATION CONTROL

OF LARGE ,SPACE ,STRUCTURE,5

(A) PERFORMANCE INDICE,5

(B) BOUNDARY CONDITION,5

(C) CONTROL REQUIREHENT,5

THIS LEADS TO THE TWO-POINT BOUNDARY-VALUE PROBLEH

(TPBVP)

ONE OF THE METHOD,5 OF SOLVIN6 TPBVP 1,5 THE

OUA,51LINEARIZATION AL6ORITHtl

669 .



MAXIMUM PRINCIPLE

STATE EQUATIONS

- f(x) + B(x)u, x(O)=xo, x(tf)=xf

PERPORfIANCE INDI CE5

tf

Jl=(l12) J (xTox +uTRu)dt

0

tf

J2 = J (I)dt= t r
0

lull{ Ulb,

NECESSARY COND|TION5

H 1=( 112)(xTQx + uTRu) + _T(f(x) + BU)

= - (_)H I lax), _ (0) unknown

(OH I IOu)=O, Ru=-BT,_

X2= I + AT(f(X)* au)

= - (aH21ax), _ (0) unknown

ui= - Uib sign(BT_ ), i = I ... n

i=l ... n

(i)

(2)

(3)

(4)

(5)

(6)

(7)

(a)

(9)

TPBVP

= g(z). z=[ x. _, ]T =

z i (0). z I (tf) known;

z2(O), z2(t f) unknown.

z2(O) to be determined.

[ Z l" z2 ]T (10)



QUASILINEARIZATION ALGORITI'I'I

(A) LINEAR DIFFERENTIAL EQUATION:

Nonhomogeneous: z = Az • B. z=[zl, z2]T. (1 !)

Zl (0), Zl (tf) known, z2(O) to be determined

Homogeneous: z = Az (I 2)

(a) n solns, of (I 2) * I particular soln. of (I I)

(b) n • I particular solns, of (! I)

(B) NONLINEAR CASE:

Linearized equation of (10):

_(k* t ) =(ag/az) z (k* t ). h( z (k))

where

z (k) is the k th approximate solution

of the nonlinear equation (i0),

z(k. I )=z(k).&z(k)

z=[z I z2]T

z I (k÷ I )(0), z I (k. I )(tf), known

z2(k* I) (0) to be determined

(13)
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pLANAR 5LEWIN6 OF FLEXIBLE 5COLE

I,.INEARIZ[D EQUATION OF MOTION:

! m T

m M

0

o_
 ii1100'I

.U3

where

0 is the angle of rotation,

nx I is the amplitude vector of the flexible modes,

n is the number of mode used,

i is the moment or Inertia about the axis of rotation

m. M are the Inertia parameter vector, matrix.

If Is the stiffness matrix.

(z) Is the mode shape function vector.

(/_ i--_(,_), z I Is the coordinate along z axis,

L Is the length of the beam,

us is the control torque on the Shuttle,

u i are the control actuators on the beam and the

reflector.



STATE EQUAT IONS

- As * Bu

esl= •

BOUNDAIRY CONDITIONS FOR s

0
s(o)= --

0

0

0

o
s(tf)=

iO

!0 2(n* 1)x I

where n is the number of mode shapes used.

PERFORMANCE INDEX

tf

J --( 112] J (xTox +uTRu)dt

0

TPBVP

Z=CZ. z=[s•A IT= [Zl .Z2]T

is the costate vector•

z I (0). z I (tf) known;

z2(O) to be determined.
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NUHERICAL RESULTS

(A) 5LEV/ING ABOUT X-AXIS (ROLL)

o._ 'Z,
u_d.

#f = .o (_j) . t2 = 4, (_)

:J_-" t
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J
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CASE / :

Q, [ °°-- O D _]

cjIS_ 2"
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CONCLUDI NG REMARKS

I) Solution has been obtained for nonlinear rigid spacecraft

attitude maneuver (including the rlgidized 5COLE).

2) Use of the Maximum Principle can make the states

satisfy the boundary conditions very well.

3) Due the fact that the costates must be used in the method.

the dimension of equations of the system is doubled, and

higher computational ability is needed in this method.

4) Further work on more complicated models (nonlinear

differential equation) is needed.

5) Need to consider different cost functions and perform

parametric studies.


